454 research outputs found

    Density of states in graphene with vacancies: midgap power law and frozen multifractality

    Get PDF
    The density of states (DoS), ϱ(E)\varrho(E), of graphene is investigated numerically and within the self-consistent T-matrix approximation (SCTMA) in the presence of vacancies within the tight binding model. The focus is on compensated disorder, where the concentration of vacancies, nAn_\text{A} and nBn_\text{B}, in both sub-lattices is the same. Formally, this model belongs to the chiral symmetry class BDI. The prediction of the non-linear sigma-model for this class is a Gade-type singularity ϱ(E)E1exp(log(E)1/x)\varrho(E) \sim |E|^{-1}\exp(-|\log(E)|^{-1/x}). Our numerical data is compatible with this result in a preasymptotic regime that gives way, however, at even lower energies to ϱ(E)E1log(E)x\varrho(E)\sim E^{-1}|\log(E)|^{-\mathfrak{x}}, 1x<21\leq \mathfrak{x} < 2. We take this finding as an evidence that similar to the case of dirty d-wave superconductors, also generic bipartite random hopping models may exhibit unconventional (strong-coupling) fixed points for certain kinds of randomly placed scatterers if these are strong enough. Our research suggests that graphene with (effective) vacancy disorder is a physical representative of such systems.Comment: References updated onl

    EGFRvIII upregulates DNA mismatch repair resulting in increased temozolomide sensitivity of MGMT promoter methylated glioblastoma

    Get PDF
    The oncogene epidermal growth factor receptor variant III (EGFRvIII) is frequently expressed in glioblastomas (GBM) but its impact on therapy response is still under controversial debate. Here we wanted to test if EGFRvIII influences the sensitivity towards the alkylating agent temozolomide (TMZ). Therefore, we retrospectively analyzed the survival of 336 GBM patients, demonstrating that under standard treatment, which includes TMZ, EGFRvIII expression is associated with prolonged survival, but only in patients with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylated tumors. Using isogenic GBM cell lines with endogenous EGFRvIII expression we could demonstrate that EGFRvIII increases TMZ sensitivity and results in enhanced numbers of DNA double-strand breaks and a pronounced S/G2-phase arrest after TMZ treatment. We observed a higher expression of DNA mismatch repair (MMR) proteins in EGFRvIII+ cells and patient tumor samples, which was most pronounced for MSH2 and MSH6. EGFRvIII-specific knockdown reduced MMR protein expression thereby increasing TMZ resistance. Subsequent functional kinome profiling revealed an increased activation of p38- and ERK1/2-dependent signaling in EGFRvIII expressing cells, which regulates MMR protein expression downstream of EGFRvIII. In summary, our results demonstrate that the oncoprotein EGFRvIII sensitizes a fraction of GBM to current standard of care treatment through the upregulation of DNA MMR

    The Maine Tidal Power Initiative: Transdisciplinary sustainability science research for the responsible development of tidal power

    Get PDF
    The Maine Tidal Power Initiative (MTPI), an interdisciplinary team of engineers, marine scientists, oceanographers, and social scientists, is using a transdisciplinary sustainability science approach to collect biophysical and social data necessary for understanding interactions between human and natural systems in the context of tidal power development in Maine. MTPI offers a unique opportunity to better understand how group structure and process influence outcomes in transdisciplinary sustainability science research. Through extensive participant observation and semi-structured interviews we: (1) describe MTPI’s organizational structure; (2) examine MTPI’s research approach and engagement with stakeholders from different sectors of society (i.e., industry, government, and the local community); and (3) identify challenges and opportunities for involving different disciplinary expertise and diverse stakeholders in transformational sustainability science research. We found that MTPI’s holistic mission, non-hierarchical structure, and iterative stakeholder engagement process led to important benefits and significant challenges. Positive outcomes include knowledge development, a transferable research framework, shared resources, personal reward, and a greater understanding of the local environment and community. Challenges identified include balancing diverse interests and priorities, maintaining engagement, managing stakeholder relationships, and limited resources. Lessons learned from the process of integrative collaborative research in Maine can offer guidance on what should be considered when carrying out similar transdisciplinary sustainability science projects in other research contexts

    Maroon Archaeology Beyond the Americas: A View From Kenya

    Get PDF
    Archaeological research on Maroons—that is, runaway slaves—has been largely confined to the Americas. This essay advocates a more global approach. It specifically uses two runaway slave communities in 19th-century coastal Kenya to rethink prominent interpretive themes in the field, including “Africanisms,” Maroons’ connections to indigenous groups, and Maroon group cohesion and identity. This article’s analysis demonstrates that the comparisons enabled by a more globalized perspective benefit the field. Instead of eliding historical and cultural context, these comparisons support the development of more localized and historically specific understandings of individual runaway slave communities both in Kenya and throughout the New World

    Influence of pump laser fluence on ultrafast structural changes in myoglobin

    Get PDF
    High-intensity femtosecond pulses from an X-ray free-electron laser enable pump probe experiments for investigating electronic and nuclear changes during light-induced reactions. On time scales ranging from femtoseconds to milliseconds and for a variety of biological systems, time-resolved serial femtosecond crystallography (TR-SFX) has provided detailed structural data for light-induced isomerization, breakage or formation of chemical bonds and electron transfer. However, all ultra-fast TR-SFX studies to date have employed such high pump laser energies that several photons were nominally absorbed per chromophore. As multiphoton absorption may force the protein response into nonphysiological pathways, it is of great concern whether this experimental approach allows valid inferences to be drawn vis-a-vis biologically relevant single-photon-induced reactions. Here we describe ultrafast pump-probe SFX experiments on photodissociation of carboxymyoglobin, showing that different pump laser fluences yield markedly different results. In particular, the dynamics of structural changes and observed indicators of the mechanistically important coherent oscillations of the Fe-CO bond distance (predicted by recent quantum wavepacket dynamics) are seen to depend strongly on pump laser energy. Our results confirm both the feasibility and necessity of performing TR-SFX pump probe experiments in the linear photoexcitation regime. We consider this to be a starting point for reassessing design and interpretation of ultrafast TR-SFX pump probe experiments such that biologically relevant insight emerges

    Understanding uptake of continuous quality improvement in Indigenous primary health care: lessons from a multi-site case study of the Audit and Best Practice for Chronic Disease project

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Experimentation with continuous quality improvement (CQI) processes is well underway in Indigenous Australian primary health care. To date, little research into how health organizations take up, support, and embed these complex innovations is available on which services can draw to inform implementation. In this paper, we examine the practices and processes in the policy and organisational contexts, and aim to explore the ways in which they interact to support and/or hinder services' participation in a large scale Indigenous primary health care CQI program.</p> <p>Methods</p> <p>We took a theory-driven approach, drawing on literature on the theory and effectiveness of CQI systems and the Greenhalgh diffusion of innovation framework. Data included routinely collected regional and service profile data; uptake of tools and progress through the first CQI cycle, and data collected quarterly from hub coordinators on their perceptions of barriers and enablers. A total of 48 interviews were also conducted with key people involved in the development, dissemination, and implementation of the Audit and Best Practice for Chronic Disease (ABCD) project. We compiled the various data, conducted thematic analyses, and developed an in-depth narrative account of the processes of uptake and diffusion into services.</p> <p>Results</p> <p>Uptake of CQI was a complex and messy process that happened in fits and starts, was often characterised by conflicts and tensions, and was iterative, reactive, and transformational. Despite initial enthusiasm, the mixed successes during the first cycle were associated with the interaction of features of the environment, the service, the quality improvement process, and the stakeholders, which operated to produce a set of circumstances that either inhibited or enabled the process of change. Organisations had different levels of capacity to mobilize resources that could shift the balance toward supporting implementation. Different forms of leadership and organisational linkages were critical to success. The Greenhalgh framework provided a useful starting point for investigation, but we believe it is more a descriptive than explanatory model. As such, it has limitations in the extent to which it could assist us in understanding the interactions of the practices and processes that we observed at different levels of the system.</p> <p>Summary</p> <p>Taking up CQI involved engaging multiple stakeholders in new relationships that could support services to construct shared meaning and purpose, operationalise key concepts and tools, and develop and embed new practices into services systems and routines. Promoting quality improvement requires a system approach and organization-wide commitment. At the organization level, a formal high-level mandate, leadership at all levels, and resources to support implementation are needed. At the broader system level, governance arrangements that can fulfil a number of policy objectives related to articulating the linkages between CQI and other aspects of the regulatory, financing, and performance frameworks within the health system would help define a role and vision for quality improvement.</p

    Modular titanium alloy neck adapter failures in hip replacement - failure mode analysis and influence of implant material

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modular neck adapters for hip arthroplasty stems allow the surgeon to modify CCD angle, offset and femoral anteversion intraoperatively. Fretting or crevice corrosion may lead to failure of such a modular device due to high loads or surface contamination inside the modular coupling. Unfortunately we have experienced such a failure of implants and now report our clinical experience with the failures in order to advance orthopaedic material research and joint replacement surgery.</p> <p>The failed neck adapters were implanted between August 2004 and November 2006 a total of about 5000 devices. After this period, the titanium neck adapters were replaced by adapters out of cobalt-chromium. Until the end of 2008 in total 1.4% (n = 68) of the implanted titanium alloy neck adapters failed with an average time of 2.0 years (0.7 to 4.0 years) postoperatively. All, but one, patients were male, their average age being 57.4 years (36 to 75 years) and the average weight 102.3 kg (75 to 130 kg). The failures of neck adapters were divided into 66% with small CCD of 130° and 60% with head lengths of L or larger. Assuming an average time to failure of 2.8 years, the cumulative failure rate was calculated with 2.4%.</p> <p>Methods</p> <p>A series of adapter failures of titanium alloy modular neck adapters in combination with a titanium alloy modular short hip stem was investigated. For patients having received this particular implant combination risk factors were identified which were associated with the occurence of implant failure. A Kaplan-Meier survival-failure-analysis was conducted. The retrieved implants were analysed using microscopic and chemical methods. Modes of failure were simulated in biomechanical tests. Comparative tests included modular neck adapters made of titanium alloy and cobalt chrome alloy material.</p> <p>Results</p> <p>Retrieval examinations and biomechanical simulation revealed that primary micromotions initiated fretting within the modular tapered neck connection. A continuous abrasion and repassivation process with a subsequent cold welding at the titanium alloy modular interface. Surface layers of 10 - 30 μm titanium oxide were observed. Surface cracks caused by fretting or fretting corrosion finally lead to fatigue fracture of the titanium alloy modular neck adapters. Neck adapters made of cobalt chrome alloy show significantly reduced micromotions especially in case of contaminated cone connection. With a cobalt-chromium neck the micromotions can be reduced by a factor of 3 compared to the titanium neck. The incidence of fretting corrosion was also substantially lower with the cobalt-chromium neck configuration.</p> <p>Conclusions</p> <p>Failure of modular titanium alloy neck adapters can be initiated by surface micromotions due to surface contamination or highly loaded implant components. In the present study, the patients at risk were men with an average weight over 100 kg. Modular cobalt chrome neck adapters provide higher safety compared to titanium alloy material.</p

    The Crystal Structure and RNA-Binding of an Orthomyxovirus Nucleoprotein

    Get PDF
    Genome packaging for viruses with segmented genomes is often a complex problem. This is particularly true for influenza viruses and other orthomyxoviruses, whose genome consists of multiple negative-sense RNAs encapsidated as ribonucleoprotein (RNP) complexes. To better understand the structural features of orthomyxovirus RNPs that allow them to be packaged, we determined the crystal structure of the nucleoprotein (NP) of a fish orthomyxovirus, the infectious salmon anemia virus (ISAV) (genus Isavirus). As the major protein component of the RNPs, ISAV-NP possesses a bi-lobular structure similar to the influenza virus NP. Because both RNA-free and RNA-bound ISAV NP forms stable dimers in solution, we were able to measure the NP RNA binding affinity as well as the stoichiometry using recombinant proteins and synthetic oligos. Our RNA binding analysis revealed that each ISAV-NP binds ,12 nts of RNA, shorter than the 24ヨ28 nts originally estimated for the influenza A virus NP based on population average. The 12-nt stoichiometry was further confirmed by results from electron microscopy and dynamic light scattering. Considering that RNPs of ISAV and the influenza viruses have similar morphologies and dimensions, our findings suggest that NP-free RNA may exist on orthomyxovirus RNPs, and selective RNP packaging may be accomplished through direct RNA-RNA interactions
    corecore